CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors.

نویسندگان

  • Joseph C Corbo
  • Karen A Lawrence
  • Marcus Karlstetter
  • Connie A Myers
  • Musa Abdelaziz
  • William Dirkes
  • Karin Weigelt
  • Martin Seifert
  • Vladimir Benes
  • Lars G Fritsche
  • Bernhard H F Weber
  • Thomas Langmann
چکیده

Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl(-/-) retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Otx2 ChIP-seq Reveals Unique and Redundant Functions in the Mature Mouse Retina

During mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural ret...

متن کامل

Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks.

Transcription factors (TFs) recognize short sequence motifs that are present in millions of copies in large eukaryotic genomes. TFsmust distinguish their target binding sites from a vast genomic excess of spurious motif occurrences; however, it is unclear whether functional sites are distinguished from nonfunctional motifs by local primary sequence features or by the larger genomic context in w...

متن کامل

Regulation of photoreceptor development by competitive activation of cell type-specific enhancers

Program Number: 436 Poster Board Number: A0149 Presentation Time: 1:30 PM–3:15 PM Regulation of photoreceptor development by competitive activation of cell type-specific enhancers Timothy J. Cherry, Milena Andzelm, David Harmin, Michael Greenberg. Neurbiology, Harvard Medical School, Boston, MA. Purpose: Photoreceptor development is driven by a network of transcription factors (TFs), however th...

متن کامل

Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa.

A fundamental challenge in analyzing exome-sequence data is distinguishing pathogenic mutations from background polymorphisms. To address this problem in the context of a genetically heterogeneous disease, retinitis pigmentosa (RP), we devised a candidate-gene prioritization strategy called cis-regulatory mapping that utilizes ChIP-seq data for the photoreceptor transcription factor CRX to rank...

متن کامل

Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunopr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2010